Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.

نویسندگان

  • R K Shields
  • L F Law
  • B Reiling
  • K Sass
  • J Wilwert
چکیده

We analyzed the twitch and summated torque (tetanus) during repetitive activation and recovery of the human soleus muscle in individuals with spinal cord injury. Thirteen individuals with complete paralysis (9 chronic, 4 acute) had the tibial nerve activated every 1,500 ms with a 20-Hz train (7 stimuli) for 300 ms and a single pulse at 1,100 ms. The stimulation protocol lasted 3 min and included 120 twitches and 120 tetani. Minimal changes were found for the acute group. The chronic group showed a significant reduction in the torque and a significant slowing of the contractile speeds of both the twitch and tetanus. The decrease in the peak twitch torque was significantly greater than the decrease in the peak tetanus torque early during the fatigue protocol for the chronic group. The twitch time to peak and half relaxation time were prolonged during fatigue, which was associated with improved fusion of the tetanus torque. At the end of the fatigue protocol, the decrease in the peak twitch torque was not significantly different from the decrease in the peak tetanus torque. After 5 min of rest, the contractile speeds recovered causing the tetanus to become unfused, but the tetanus torque became less depressed than the twitch torque. The differential responses for the twitch and the tetanus suggest an interplay between optimal fusion created from contractile speed slowing and excitation contraction coupling compromise. These issues make the optimal design of functional electrical stimulation systems a formidable task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.

Intensive exercise is associated with a pronounced increase in extracellular K+ ([K+]o). Because of the ensuing depolarization and loss of excitability, this contributes to muscle fatigue. Intensive exercise also increases the level of circulating catecholamines and lactic acid, which both have been shown to alleviate the depressing effect of hyperkalemia in slow-twitch muscles. Because of thei...

متن کامل

Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundl...

متن کامل

Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed sol...

متن کامل

EFFECTS OF SIX WEEKS ENDURANCE TRAINING ON PROTEIN LEVELS OF GLUT4 AND HDAC5 IN SOLEUS MUSCLE IN DIABETIC RATS

Background: Increased expression of HDAC5 reduces the expression of GLUT4 in slow-twitch fibers, and this mechanism has not been studied in diabetes. Therefore, the purpose of study was to investigate the effect of six weeks endurance training on protein levels of GLUT4 and HDAC5 in soleus muscle in diabetic rats. Methods: For this purpose, 32 male Wistar rats (weight: 245±9.4 g) were randomly...

متن کامل

Levo-Carnitine Reduces Oxidative Stress and Improves Contractile Functions of Fast Muscles in Type 2 Diabetic Rats

Background: Metabolic derangements in type 2 diabetes mellitus (T2DM) are likely to affect skeletal muscle contractile functions adversely. Levo-carnitine improves muscle contractile functions in healthy humans and rats and corrects metabolic derangements in T2DM. Therefore, it is likely to improve muscle contractile functions in T2DM as well. This study was designed to determine the effect of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 82 5  شماره 

صفحات  -

تاریخ انتشار 1997